A Simple Model for Axial Displacement in a Cylindrical Pipe With Internal Shock Loading
نویسندگان
چکیده
This paper describes a simplified model for predicting the axial displacement, stress, and strain in pipes subjected to internal shock waves. This model involves the neglect of radial and rotary inertia of the pipe, so its predictions represent the spatially averaged or low-pass–filtered response of the tube. The simplified model is developed first by application of the physical principles of conservation of mass and momentum on each side of the shock wave. This model is then reproduced using the mathematical theory of the Green’s function, which allows other load and boundary conditions to be more easily incorporated. Comparisons with finite element simulations demonstrate that the simple model adequately captures the tube’s axial motion, except near the critical velocity corresponding to the bar wave speed ffiffiffiffiffiffiffiffi E=q. Near this point, the simplified model, despite being an unsteady model, predicts a time-independent resonance, while the finite element model predicts resonance that grows with time. [DOI: 10.1115/1.4025270]
منابع مشابه
Experimental investigations on the softening and ratcheting behaviors of steel cylindrical shell under cyclic axial loading
In this research, softening and ratcheting behaviors of Ck20 alloy steel cylindrical shells were studied under displacement-control and force-control cyclic axial loading and the behavior of hysteresis curves of specimens was also investigated. Experimental tests were performed by a servo-hydraulic INSTRON 8802 machine. The mechanical properties of specimens were determined according to ASTM E8...
متن کاملUltrasonic guided waves reflection from simple dent in pipe for defect rate estimation and parameters determination of axisymmetric wave generation source
In this paper, the reflection of ultrasonic guided waves from simple dent in pipes has been investigated using finite element method and the relationship between reflection coefficient of these waves and deformation rate has been determined. Also, the effect of the parameters of wave generation source on the generated wave field has been investigated using normal modes expansion method. At firs...
متن کاملNumerical and Experimental Study on Ratcheting Behavior of Steel Cylindrical Shells with/without Cutout Under Cyclic Combined and Axial Loading
Ratcheting behavior of steel 304L cylindrical shell under cyclic combined and axial loading are investigated in this paper, numerically. Cylindrical shells were fixed oblique at angle of 20° and normal with respect to the longitudinal direction of the shell and subjected to force-controlled cycling with non-zero mean force, which causes the accumulation of plastic deformation or ratcheting beha...
متن کاملInvestigating the Effectiveness of a Composite Patch on Repairing Pipes Subjected to Circumferential Cracks under Combined Loadings
The purpose of this study is to investigate bending moment and the axial load capacity of a pressurized pipe suffering from a through-wall circumferential crack repaired by a composite sleeve. The three-dimensional finite element method (FEM) was adopted to compute the results, and the failure assessment diagram (FAD) was employed to investigate the failure behavior of the repaired pipe. The fi...
متن کاملElastic Buckling Analysis of Ring and Stringer-stiffened Cylindrical Shells under General Pressure and Axial Compression via the Ritz Method
Elastic stability of ring and stringer-stiffened cylindrical shells under axial, internal and external pressures is studied using Ritz method. The stiffeners are rings, stringers and their different arrangements at the inner and outer surfaces of the shell. Critical buckling loads are obtained using Ritz method. It has been found that the cylindrical shells with outside rings are more stable th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013